วันพฤหัสบดีที่ 20 ตุลาคม พ.ศ. 2559

บทที่ 1

การสื่อสารข้อมูล 

การสื่อสารข้อมูล (Data Communications) 

หมายถึง กระบวนการถ่ายโอนหรือแลกเปลี่ยนข้อมูลกันระหว่างผู้ส่งและผู้รับ โดยผ่านช่องทางสื่อสาร เช่น อุปกรณ์อิเล็กทรอนิกส์ หรือคอมพิวเตอร์เป็นตัวกลางในการส่งข้อมูล เพื่อให้ผู้ส่งและผู้รับเกิดความเข้าใจซึ่งกันและกัน
วิธีการส่งข้อมูล จะแปลงข้อมูลเป็นสัญญาณ หรือรหัสเสียก่อนแล้วจึงส่งไปยังผู้รับ และเมื่อถึงปลายทางหรือผู้รับก็จะต้องมีการแปลงสัญญาณนั้น กลับมาให้อยู่ในรูปที่มนุษย์ สามารถที่จะเข้าใจได้ ในระหว่างการส่งอาจจะมีอุปสรรค์ที่เกิดขึ้นก็คือ สิ่งรบกวน (Noise) จากภายนอกทำให้ข้อมูลบางส่วนเสียหาย หรือผิดเพี้ยนไปได้ซึ่งระยะทางก็มีส่วนเกี่ยวข้อง ด้วยเพราะถ้าระยะทางในการส่งยิ่งมากก็อาจจะทำให้เกิดสิ่งรบกวนได้มากเช่นกัน จึงต้องมีหาวิธีลดสิ่งรบกวน
เหล่านี้ โดยการพัฒนาตัวกลางในการสื่อสารที่จะทำให้เกิดการรบกวนน้อยที่สุด

องค์ประกอบขั้นพื้นฐานของระบบ

องค์ประกอบขั้นพื้นฐานของระบบสื่อสารโทรคมนาคม สามารถจำแนกออกเป็นส่วนประกอบได้ดังต่อไปนี้

1. ผู้ส่งข่าวสารหรือแหล่งกำเนิดข่าวสาร (source) อาจจะเป็นสัญญาณต่าง ๆ เช่น สัญญาณภาพ
ข้อมูล และเสียงเป็นต้น ในการติดต่อสื่อสารสมัยก่อนอาจจะใช้แสงไฟ ควันไฟ หรือท่าทางต่าง ๆ ก็นับว่าเป็นแหล่งกำเนิดข่าวสาร จัดอยู่ในหมวดหมู่นี้เช่นกัน

2. ผู้รับข่าวสารหรือจุดหมายปลายทางของข่าวสาร (sink) ซึ่งจะรับรู้จากสิ่งที่ผู้ส่งข่าวสาร หรือแหล่งกำเนิดข่าวสารส่งผ่านมาให้ตราบใด
ที่การติดต่อสื่อสารบรรลุวัตถุประสงค์ ผู้รับสารหรือจุดหมายปลายทางของข่าวสารก็จะได้รับข่าวสารนั้น ๆ ถ้าผู้รับสารหรือ จุดหมายปลายทางไม่ได้รับ
ข่าวสาร ก็แสดงว่าการสื่อสารนั้นไม่ประสบความสำเร็จ กล่าวคือไม่มีการสื่อสารเกิดขึ้นนั่นเอง

 3. ช่องสัญญาณ (channel) ในที่นี้อาจจะหมายถึงสื่อกลางหรือตัวกลางที่ข่าวสารเดินทางผ่าน อาจจะเป็นอากาศ สายนำสัญญาณต่าง ๆ หรือแม้กระทั่งของเหลว เช่น น้ำ น้ำมัน เป็นต้น เปรียบเสมือนเป็นสะพานที่จะให้ข่าวสารข้ามจากฝั่งหนึ่งไปยังอีกฝั่งหนึ่ง
4. การเข้ารหัส (encoding) เป็นการช่วยให้ผู้ส่งข่าวสารและผู้รับข่าวสารมีความเข้าใจตรงกันในการสื่อความหมาย จึงมีความจำเป็นต้องแปลง
ความหมายนี้ การเข้ารหัสจึงหมายถึงการแปลงข่าวสารให้อยู่ในรูปพลังงาน ที่พร้อมจะส่งไปในสื่อกลาง ทางผู้ส่งมีความเข้าใจต้องตรงกันระหว่าง ผู้ส่งและผู้รับ หรือมีรหัสเดียวกัน การสื่อสารจึงเกิดขึ้นได้
5. การถอดรหัส (decoding)  หมายถึงการที่ผู้รับข่าวสารแปลงพลังงานจากสื่อกลางให้กลับไปอยู่ในรูปข่าวสารที่ส่งมาจากผู้ส่งข่าวสาร โดยมีความเข้าในหรือรหัสตรงกัน
6. สัญญาณรบกวน (noise) เป็นสิ่งที่มีอยู่ในธรรมชาติ มักจะลดทอนหรือรบกวนระบบ อาจจะเกิดขึ้นได้ทั้งทางด้านผู้ส่งข่าวสาร ผู้รับข่าวสาร และช่องสัญญาณ แต่ในการศึกษาขั้นพื้นฐานมักจะสมมติให้ทางด้านผู้ส่งข่าวสารและผู้รับข่าวสารไม่มีความผิดพลาด ตำแหน่งที่ใช้วิเคราะห์ มักจะเป็นที่ตัวกลางหรือช่องสัญญาณ เมื่อไรที่รวมสัญญาณรบกวนด้านผู้ส่งข่าวสารและด้านผู้รับข่าวสาร ในทางปฎิบัติมักจะใช้ วงจรกรอง (filter)
กรองสัญญาณแต่ต้นทาง เพื่อให้การสื่อสารมีคุณภาพดียิ่งขึ้นแล้วค่อยดำเนินการ เช่น การเข้ารหัสแหล่งข้อมูล เป็นต้น

ข่ายการสื่อสารข้อมูล 

หมายถึง การรับส่งข้อมูลหรือสารสนเทศจากที่หนึ่งไปยังอีกที่หนึ่ง โดยอาศัยระบบการส่งข้อมูล ทางคลื่นไฟฟ้าหรือแสง อุปกรณ์ที่ประกอบเป็นระบบการสื่อสารข้อมูลโดยทั่วไปเรียกว่า
ข่ายการสื่อสารข้อมูล (Data Communication Networks) 

องค์ประกอบพื้นฐาน

1. หน่วยส่งข้อมูล (Sending Unit)
2. ช่องทางการส่งข้อมูล (Transmisstion Channel)
3. หน่วยรับข้อมูล (Receiving Unit)

วัตถุประสงค์หลักของการนำการสื่อการข้อมูลมาประยุกต์ใช้ในองค์การประกอบด้วย


1. เพื่อรับข้อมูลและสารสนเทศจากแหล่งกำเนิดข้อมูล
2. เพื่อส่งและกระจายข้อมูลได้อย่างรวดเร็ว
3. เพื่อลดเวลาการทำงาน
4. เพื่อการประหยัดค่าใช้จ่ายในการส่งข่าวสาร
5. เพื่อช่วยขยายการดำเนินการองค์การ
6. เพื่อช่วยปรับปรุงการบริหารขององค์การ

ประโยชน์ของการสื่อสารข้อมูล


1) การจัดเก็บข้อมูลได้ง่ายและสื่อสารได้รวดเร็ว การจัดเก็บซึ่อยู่ในรูปของสัญญาณอิเล็กทรอนิกส์ สามารถจัดเก็บไว้ในแผ่นบันทึกที่มีความหนาแน่นสูง
แผ่นบันทึกแผ่นหนึ่งสามารถบันทึกข้อมูลได้มากกกว่า 1 ล้านตัวอักษร สำหรับการสื่อสารข้อมูลนั้น ถ้าข้อมูลผ่านสายโทรศัพท์ได้ในอัตรา 120 ตัวอักษร
ต่อวินาทีแล้ว จะส่งข้อมูล 200 หน้าได้ในเวลา 40 นาที โดยไม่ต้องเสียเวลานั่งป้อนข้อมูลเหล่านั้นซ้ำใหม่อีก
2) ความถูกต้องของข้อมูล โดยปกติวิธีส่งข้อมูลด้วยสัญญาณอิเล็กทรอนิกส์ จากจุดหนึ่งไปยังอีกจุดหนึ่งด้วยระบบดิจิตอล วิธีการส่งข้อมูลนั้นมีการตรวจสอบ
สภาพของข้อมูล หากข้อมูลผิดพลาดก็จะมีการรับรู้ และพยายามหาวิธีแก้ไขให้ข้อมูลที่ได้รับมีความถูกต้อง โดยอาจให้ทำการส่งใหม่ หรือกรณีที่ผิดพลาด
ไม่มากนัก ฝ่ายผู้รับอาจใช้โปรแกรมของตนแก้ไขข้อมูลให้ถูกต้องได้
3) ความเร็วของการทำงาน โดยปกติสัญญาณทางไฟฟ้าจะเดินทางด้วยความเร็วเท่าแสง ทำให้การใช้คอมพิวเตอร์ส่งข้อมูลจากซีกโลกหนึ่ง ไปยังอีกซีก
โลกหนึ่ง หรือค้นหาข้อมูลจากฐานข้อมูลขนาดใหญ่ สามารถทำได้รวดเร็ว ความรวดเร็วของระบบทำให้ผู้ใช้สะดวกสบายยิ่งขึ้น เช่น บริษัทสายการบินทุกแห่ง
สามารถทราบข้อมูลของทุกเที่ยวบินได้อย่างรวดเร็ว ทำให้การจองที่นั่งของสายการบินสามารถทำได้ทันที
4) ต้นทุนประหยัด การเชื่อมต่อคอมพิวเตอร์เข้าหากันเป็นเครือข่าย เพื่อส่งหรือสำเนาข้อมูล ทำให้ราคาต้นทุนของการใช้ข้อมูลประหยัดขึ้น เมื่อเทียบกับการ
จัดส่งแบบวิธีอื่น สามารถส่งข้อมูลให้กันและกันผ่านทางสายโทรศัพท์ได้ 

ผลการค้นหารูปภาพสำหรับ ระบบเครือข่ายคอมพิวเตอร์
ภาพที่  1.  จากเว็บ https://thitipa51.wordpress.com

 

 

 สัญญาณแอนะล็อก

เป็นสัญญาณแบบต่อเนื่อง มีลักษณะเป็นคลื่นไซน์ (sine wave) โดยที่แต่ละคลื่นจะมีความถี่และความเข้มของ สัญญาณที่ต่างกัน เมื่อนำสัญญาณข้อมูลเหล่านี้ผ่านอุปกรณ์รับสัญญาณและแปลงสัญญาณก็จะได้ ข้อมูลที่ต้องการ ตัวอย่างของการส่งข้อมูลที่มีสัญญาณแบบแอนะล็อก คือ การส่งผ่านระบบโทรศัพท์
สัญญาณแอนะล็อกเป็นสัญญาณที่มักเกิดขึ้นในธรรมชาติเป็นสัญญาณที่มีความ ต่อเนื่อง ไม่ได้มีการเปลี่ยนแปลงอย่างรวดเร็ว สัญญาณแบบนี้ เช่น เสียงพูด เสียงดนตรี เป็นต้น



สัญญาณคลื่นนำ (Carrier Wave)

             สัญญาณคลื่นนำ หมายถึง พลังงานคลื่นแม่เหล็กไฟฟ้าที่ช่วยนำสัญญาณข้อมูลเคลื่อนย้ายจากที่หนึ่งไปยังอีกที่หนึ่ง เป็นคลื่นแม่เหล็กไฟฟ้าที่มีความถี่สูง สามารถส่งผ่านสื่อกลางไปในระยะไกลๆได้




      - การมอดูเลตชนิดเปลี่ยนความสูงของคลื่นนำ (Amplitude Modulation: AM)

      - การมอดูเลตชนิดเปลี่ยนความถี่ของคลื่นนำ   (Frequency Modulation: FM )

      - การมอดูเลตชนิดเปลี่ยนเฟสของคลื่นนำ  (Phase Modulation: PM )



      - การมอดูเลตเชิงเลขชนิดเปลี่ยนความสูงของคลื่นนำ (Amplitude Shift Keying: ASM)

      - การมอดูเลตเชิงเลขชนิดเปลี่ยนความถี่ของคลื่นนำ (Ferquency Shift Keying: FSK)
      - การมอดูเลตเชิงเลขชนิดเปลี่ยนเฟสของคลื่นนำ (Phase Shift Keying: PSK)

โมเด็ม (Modem)


      - โมเด็ม เป็นอุปกรณ์ที่ทำหน้าที่ในการแปลงข้อมูลดิจิตอล ให้เป็นสัญญาณอนาล็อก เพื่อให้สามารถส่งผ่านสื่อกลางประเภทอนาล็อกได้
ภาพที่ 2. จากเว็บ http://ratrilovely603.blogspot.com/





วิธีการส่งข้อมูลของโมเด็ม



      - การมอดูเลตเชิงเลขชนิเดเปลี่ยนความสูงของคลื่นนำ (Amplitude Shift Keying: ASM)
      - การมอดูเลตเชิงเลขชนิดเปลี่ยนความถี่ของคลื่นนำ (Frequency Shift Keying: FSK)
      - การมอดูเลตเชิงเลขชนิดเปลี่ยนเฟสของคลื่นนำ (Phase Shift Keying: PSK)

ภาพที่ 3. จากเว็บ http://ratrilovely603.blogspot.com/



 

รูปแบบการส่งข้อมูลของโมเด็ม

      รูปแบบของข้อมูลที่โมเด็มทำการส่งไปในสื่อกลาง สามารถแบ่งได้ตามประเภทโมเด็ม คือ โมเด็มแบบอะซิงโครนัส และโมเด็มแบบซิงโครนัส

  

การอินเตอร์เฟซของโมเด็ม (Modem Interface)


      ในการใช้โมเด็มเพื่อทำการส่งหรือรับข้อมูล 

จะต้องทำการเชื่อมต่อกับพอร์ต (Port) ของอุปกรณ์การสื่อสารเช่น เครื่องคอมพิวเตอร์ ซึ่งมาตราฐานในการเชื่อมต่อระหว่างเครื่องคอมพิวเตอร์และโมเด็มนิยมใช้ในปัจจุบัน คือ มาตราฐาน RS-232

 

 

 สัญญาณดิจิตอล

ในกรณีที่ต้องการส่งข้อมูลผ่านสื่อกลางประเภทดิจิตอล ไม่ว่าข้อมูลนั้นจะเป็นข้อมูลดิจิตอลหรือข้อมูลอนาล็อก จะต้องทำการเปลี่ยนข้อมูลเหล่านั้นให้เป็นสัญญาณดิจิตอล เพื่อให้สามารถส่งผ่านไปในสื่อกลางนั้นๆได้ ตัวอย่างเช่น การส่งข้อมูลผ่านเครือข่ายโทรศัพท์ดิจิตอล (ISDN) 
ผลการค้นหารูปภาพสำหรับ สัญญาณดิจิตอล
ภาพที่ 4. จากเว็บ http://ratrilovely603.blogspot.com/



การแปลงข้อมูลดิจิตอลเป็นสัญญาณข้อมูลดิจิตอล

               ในการส่งข้อมูลด้วยสัญญาณดิจิตอล ถึงแม้ว่าข้อมูลดิจิตอลแล้วก็ตาม จะต้องทำการแปลงข้อมูลดิจิตอลนั้นให้เป็นสัญญาณดิจิตอล เพื่อทำการส่งไปในสื่อกลาง กระบวนการแปลงข้อมูลดิจิตอลให้เป็นสัญญาณดิจิตอล เรียกว่า การเข้ารหัส(Encoding)

การแปลงข้อมูลดิจิตอลเป็นสัญญาณดิจิตอล มีวิธีการ ดังนี้คือ

1. การเข้ารหัสแบบขั้วเดียว(Unipolar Encoding)

               การเข้ารหัสแบบขั้วเดียวเป็นวิธีที่ง่ายและเป็นพื้นฐานมากที่สุด ปัจจุบันไม่นิยมนำมาใช้งาน แต่มีประโยชน์เพื่อเป็นพื้นฐานในการศึกษาวิธีการเข้ารหัสแบบอื่นที่ซับซ้อนขึ้นไป โดยมีหลักการทำงาน ดังนี้ คือ ทำการสร้างพัลส์ (Pulse) ที่ระดับความสูงระดับหนึ่งเพื่อใช้แทนเลข 1 ส่วนเลข 0 จะแทนด้วยสัญญาณระนาบ

2. การเข้ารหัสแบบมีขั้ว(Polar Encoding)

              การเข้ารหัสแบบนี้ทำได้หลายรูปแบบ แต่ที่ได้รับความนิยมในปัจจุบัน คือ วิธีไม่มีค่าศูนย์(Non Return to Zero Encoding : NRZ) และวิธีมีค่าเป็นศูนย์(Return to Zero Encoding : RZ)
วิธีไม่มีค่าศูนย์ (NRZ) เป็นวิธีที่ใช้สัญญาณที่มีค่าเป็นบวกแทนเลข 1 และสัญญาณที่มีค่าเป็นลบแทนเลข 0
วิธีมีค่าเป็นศูนย์ RZ
              ในการส่งข้อมูลด้วยสัญญาณดิจิตอล กรณีที่บิตของข้อมูลมีค่าเป็น 1 หรือ 0 ติดต่อกันหลายๆบิตผู้รับอาจได้รับสัญญาณไม่ครบถ้วนทุกบิต ดังนั้นเพื่อป้องกันการผิดพลาดจึงต้องมีการส่งสัญญาณการเข้าจังหวะไปด้วย ดังนั้นระดับของสัญญาณจึงมี 3 ระดับ คือ สัญญาณที่มีค่าเป็นบวกแทนเลข 1 สัญญาณที่มีค่าเป็นลบแทนเลข 0 และสัญญาณที่มีค่าเป็นกลางมีไว้สำหรับคั่นกลางระหว่างแต่ละบิต

3.การเข้ารหัสแบบสองขั้ว (Bipolar Encoding)

เป็นวธีการเข้ารหัสที่ได้รับความนิยมมากที่สุด โดยใช้ระดับของสัญญาณ 3 ระดับ คือ ข้อมูลที่เป็นเลข 0 แทนด้วยสัญญาณที่มีค่าเป็นกลาง ส่วนข้อมูลที่เป็นเลข 1 จะใช้สัญญาณสลับระหว่างค่าบวกและค่าลบ




 
การแปลงข้อมูลอนาล็อกให้เป็นสัญญาณดิจิตอล (Analog Data Digital Signal)

                        กระบวนการแปลงอนาล็อกให้เป็นสัญญาณดิจิตอล เรียกว่า โค้ดเดอร์ (Coder) และกระบวนการแปลงสัญญาณดิจิตอลให้เป็นข้อมูลเดิม เรียกว่า ดีโค้ดเดอร์ (Decoder) และอุปกรณ์ที่ทำหน้าที่โค้ดเดอร์และดีโค้ดเดอร์ เรียกว่า โคเด็ก (CODEC) การแปลงข้อมูลอนาล็อกให้เป็นสัญญาณดิจิตอล มีวิธีการดังนี้คือ

1. Pulse Amplitude Modulation (PAM)

- ทำการสุ่มตัวอย่าง (Sampling) สัญญาณอนาล็อกตามช่วงเวลาที่เท่ากัน เพื่อให้ได้สัญญาณที่ขาดจากกันเป็น      ช่วงๆ เรียกว่า Pulse โดยที่ความสูงของแต่ละ Pulse เท่ากับความสูง (Amplitude) ของสัญญาณเดิม
- การสุ่มตัวอย่างในที่นี้ หมายถึง การวัดความสูงข้อสัญญาณอนาล็อก
- นำตัวอย่างที่ได้ที่มีลักษณะเป็น Pulse ที่ไม่ต่อเนื่อง มาสร้างเป็นสัญญาณดิจิตอล แล้วทำการส่งสัญญาณนี้ไปตามสื่อกลางดิจิตอล
- ผู้รับปลายทางจะนำ Pulse ซึ่งเป็นสัญญาณที่ไม่ต่อเนื่อง มาแปลงเป็นสัญญาณอนาล็อกที่ต่อเนื่อง
- วิธี PAM นี้ ไม่นิยมนำไปประยุกต์งานโดยตรง แต่จะใช้เป็นพื้นฐานในการพัฒนาวิธีการแปลงสัญญาณอนาล็อกเป็นสัญญาณดิจิตอลวิธีอื่น

2. Pulse Code Modulation (PCM)

เทคนิคการแปลงสัญญาณอนาล็อกเป็นสัญญาณดิจิตอลโดยวิธี PCM แบ่งออกเป็น 4 ขั้นตอน คือ ขั้นตอนที่ 1 ทำการสร้าง Pulse โดยวิธี PAM ขั้นตอนที่ 2 Quantized
           - เป็นการกำหนดค่าความสูงของ Pulse ซึ่งระดับความสูงของ Pulse ขึ้นอยู่กับจำนวนบิตของข้อมูล    ที่นำมาเข้ารหัส
             ตัวอย่าง : ถ้าใช้การเข้ารหัสเลขฐานสองจำนวน 8 บิต เพื่อแทน 1 อักขระ โดยบิตแรกเป็น Sign Bit       ดังนั้นความสูงของ Pulse จะมีค่าอยู่ในช่วง -127 ถึง +127
ขั้นตอนที่ 3 Binary Encoding
                     เป็นการแปลง Pulse ให้อยู่ในรูป Binary Digit
ขั้นตอนที่ 4 Digital /Digital Encoding
                   เป็นการแปลง Binary Digit ให้อยู่ในสัญญาณดิจิตอล

สรุปท้ายบท การแปลงข้อมูลดิจิตอลเป็นสัญญาณดิจิตอล
- การเข้ารหัสแบบขั้วเดียว(Unipolar Encoding)
- การเข้ารหัสแบบมีขั้ว(Polar Encoding)
- การเข้ารหัสแบบสองขั้ว (Bipolar Encoding)
การแปลงข้อมูลอนาล็อกให้เป็นสัญญาณดิจิตอล
- Pulse Amplitude Modulation (PAM)
- Pulse Code Modulation (PCM)


ส่วนประกอบของระบบการสื่อสาร
1.  ข่าวสาร
2.  ผู่ส่ง ( แหล่งกำเนิดข่าวสาร )
3.  ผู้รับ (จุดหมายปลายทาง ) 
4.  สื่อกลางส่งข้อมูล
5.  โพรโทคอล

คุณสมบัติพื้นฐาน 3 ประการของการสื่อสารข้อมูล

1.  การส่งมอบ
2.  ความถูกต้องแน่นอน
3.  ระยะเวลา    

ทิศทางการส่งข้อมูล

1.  การสื่อสารแบบทิศทางเดียว
2.  การสื่อสารแบบกึ่งสองทิศทาง
3.  การสื่อสารแบบสองทิศทาง  

การสื่อสารโทรคมนาคม


หมายถึงการสื่อสารระยะไกล โดยใช้เทคโนโลยีต่างๆ โดยเฉพาะอย่างยิ่งผ่านทางสัญญาณไฟฟ้า หรือคลื่นแม่เหล็กไฟฟ้าเนื่องจากเทคโนโลยีที่แตกต่างกันจำนวนมากที่เกี่ยวข้องกับคำนี้ จึงมักใช้ในรูปพหูพจน์ เช่น Telecommunications
เทคโนโลยีการสื่อสารโทรคมนาคมในช่วงต้นประกอบด้วยสัญญาณภาพ เช่น ไฟสัญญาณ, สัญญาณควัน, โทรเลข, สัญญาณธงและ เครื่องส่งสัญญาณด้วยกระจกสะท้อนแสงจากดวงอาทิตย์ตัวอย่างอื่นๆของการสื่อสารโทรคมนาคมก่อนช่วงที่ทันสมัยได่แก่ข้อความเสียง เช่นกลอง, แตรและนกหวีด เทคโนโลยีการสื่อสารโทรคมนาคมด้วยไฟฟ้าและแม่เหล็กไฟฟ้าได้แก่โทรเลข, โทรศัพท์และ โทรพิมพ์, เครือข่าย, วิทยุ, เครื่องส่งไมโครเวฟ, ใยแก้วนำแสง, ดาวเทียมสื่อสารและอินเทอร์เน็ต
การปฏิวัติ ในการสื่อสารโทรคมนาคมไร้สายเริ่มต้นขึ้นในปี 190X กับการเป็นผู้บุกเบิกพัฒนาใน การสื่อสารทางวิทยุโดย Guglielmo มาร์โคนี ที่ได้รับรางวัลโนเบลในสาขาฟิสิกส์ในปี 1909 สำหรับความพยายามของเขา นักประดิษฐ์ผู้บุกเบิกและนักพัฒนาอื่นๆที่น่าทึ่งมากๆในด้านการ สื่อสารโทรคมนาคมไฟฟ้าและอิเล็กทรอนิกส์รวมถึง ชาร์ลส์ วีทสโตน และ ซามูเอล มอร์ส (โทรเลข) , Alexander Graham Bell (โทรศัพท์), เอ็ดวิน อาร์มสตรอง และลี เดอ ฟอเรสท์ (วิทยุ) เช่นเดียวกับที่ จอห์น โลจี แบร์ด และ Philo Farnsworth (โทรทัศน์)
กำลังการผลิตที่มีประสิทธิภาพของโลกในการแลกเปลี่ยนข้อมูลผ่านทาง เครือข่ายการสื่อสารโทรคมนาคมสองทางเพิ่มขึ้นจาก 281 เพตาไบต์ของข้อมูล (ที่ถูกบีบอัดอย่างดีที่สุด) ในปี 1986 เป็น 471 petabytes ในปี 1993 และ 2.2 (บีบอัดอย่างดีที่สุด ) เอ็กซาไบต์ ในปี 2000 และ 65 (บีบอัดอย่างดีที่สุด) exabytes ในปี 2007นี่คือเทียบเท่าข้อมูลของสองหน้า หนังสือพิมพ์ต่อคนต่อวันในปี 1986 และ หกเต็มหน้าหนังสือพิมพ์ต่อคนต่อวันในปี 2007ด้วยการเจริญเติบโตขนาดนี้, การสื่อสารโทรคมนาคมมีบทบาทสำคัญมากขึ้นในเศรษฐกิจโลกและอุตสาหกรรม โทรคมนาคมทั่วโลกประมาณ$ 4.7 ล้านล้านภาคเศรษฐกิจในปี 2012รายได้จากการให้บริการของอุตสาหกรรมโทรคมนาคมทั่วโลกถูกประเมินไว้ที่ $1.5 ล้านล้านในปี 2010 สอดคล้องกับ 2.4% ของผลิตภัณฑ์มวลรวมของโลก (GDP)

ครือข่ายคอมพิวเตอร์

เครือข่ายคอมพิวเตอร์ หรือ คอมพิวเตอร์เน็ตเวิร์ก (อังกฤษ: computer network; ศัพท์บัญญัติว่า ข่ายงานคอมพิวเตอร์) คือเครือข่ายการสื่อสารโทรคมนาคมระหว่างคอมพิวเตอร์จำนวน ตั้งแต่สองเครื่องขึ้นไปสามารถแลกเปลี่ยนข้อมูลกันได้ การเชื่อมต่อระหว่างอุปกรณ์คอมพิวเตอร์ต่างๆในเครือข่าย (โหนดเครือข่าย) จะใช้สื่อที่เป็นสายเคเบิลหรือสื่อไร้สาย เครือข่ายคอมพิวเตอร์ที่รู้จักกันดีคือ อินเทอร์เน็ต
การที่ระบบเครือข่ายมีบทบาทสำคัญมากขึ้นในปัจจุบัน เพราะมีการใช้งานคอมพิวเตอร์อย่างแพร่หลาย จึงเกิดความต้องการที่จะเชื่อมต่อคอมพิวเตอร์เหล่านั้นถึงกัน เพื่อเพิ่มความสามารถของระบบให้สูงขึ้น และลดต้นทุนของระบบโดยรวมลง
การโอนย้ายข้อมูลระหว่างกันในเครือข่าย ทำให้ระบบมีขีดความสามารถเพิ่มมากขึ้น การแบ่งการใช้ทรัพยากร เช่น หน่วยประมวลผล, หน่วยความจำ, หน่วยจัดเก็บข้อมูล, โปรแกรมคอมพิวเตอร์ และอุปกรณ์ต่าง ๆ ที่มีราคาแพงและไม่สามารถจัดหามาให้ทุกคนได้ เช่น เครื่องพิมพ์ เครื่องกราดภาพ (scanner) ทำให้ลดต้นทุนของระบบลงได้
อุปกรณ์เครือข่ายที่สร้างข้อมูล, ส่งมาตามเส้นทางและบรรจบข้อมูลจะเรียกว่าโหนดเครือข่าย. โหนดประกอบด้วยโฮสต์เช่นเซิร์ฟเวอร์, คอมพิวเตอร์ส่วนบุคคลและฮาร์ดแวร์ของระบบเครือข่าย อุปกรณ์สองตัวจะกล่าวว่าเป็นเครือข่ายได้ก็ต่อเมื่อกระบวนการในเครื่องหนึ่ง สามารถที่จะแลกเปลี่ยนข้อมูลกับกระบวนการในอีกอุปกรณ์หนึ่งได้
เครือข่ายจะสนับสนุนแอปพลิเคชันเช่นการเข้าถึงเวิลด์ไวด์เว็บ, การใช้งานร่วมกันของแอปพลิเคชัน, การใช้เซิร์ฟเวอร์สำหรับเก็บข้อมูลร่วมกัน, การใช้เครื่องพิมพ์และเครื่องแฟ็กซ์ร่วมกันและการใช้อีเมลและโปรแกรมส่ง ข้อความโต้ตอบแบบทันทีร่วมกัน

 ประเภทของเครือข่ายคอมพิวเตอร์

1. เครือข่ายท้องถิ่น 

ระบบเครือข่ายแบบ LAN หรือระบบเครือข่ายเฉพาะบริเวณ โดยปกติแล้วจะเป็นระบบเครือข่ายส่วนตัว (Private Network) นั่นคือองค์กรที่ต้องการใช้งานเครือข่าย ทำการสร้าง เครือข่ายคอมพิวเตอร์ที่เชื่อมต่อกันเป็นระบบเครือข่ายในระยะใกล้ ๆ ซึ่งจะช่วยให้เกิดประโยชน์แก่องค์กรและธุรกิจต่างๆ มากมาย เช่น
       - สามารถแบ่งเบาการประมวลผลไปยังเครื่องต่างๆ เฉลี่ยกันไป
       - สามารถแบ่งกันใช้งานอุปกรณ์ต่างๆ เช่น เครื่องพิมพ์ ซีดีรอมไดร์ฟ เครื่องคอมพิวเตอร์ที่มีประสิทธิภาพสูง เป็นต้น
       - สามารถแบ่งกันใช้งานซอฟต์แวร์และข้อมูลหรือสารสนเทศต่างๆ รวมทั้งทำให้สามารถจัดเก็บข้อมูลเหล่านั้นไว้เพียงที่เดียว
       - สามารถวางแผนหรือทำงานร่วมกันเป็นกลุ่มได้ แม้จะไม่ได้อยู่ใกล้กันก็ตาม
       - สามารถใช้ในการติดต่อกัน เช่น ส่งจดหมายทางอิเล็กทรอนิกส์ หรือการส่งเสียงหรือภาพทางอิเล็กทรอนิกส์ เป็นต้น
       - ช่วยลดค่าใช้จ่ายโดยรวมขององค์กร

ชนิดการเชื่อมต่อของเครือข่าย LAN
การเชื่อมต่อคอมพิวเตอร์เข้าด้วยกันเป็นเครือข่ายเฉพาะบริเวณ (LAN) นั้น จุดประสงค์หลักอย่างหนึ่งก็คือการแบ่งกันใช้ทรัพยากรที่มีอยู่ โดยทรัพยากรเหล่านั้นอาจเป็นหน่วยประมวลผลกลาง (CPU) ความเร็วสูง ฮาร์ดดิสก์ เครื่องพิมพ์ หรือแม้แต่อุปกรณ์สื่อสารต่างๆ ซึ่งอุปกรณ์เหล่านี้จะเชื่อมอยู่กับคอมพิวเตอร์เครื่องใดเครื่องหนึ่ง
วิธีการเชื่อมต่อเครือข่ายคอมพิวเตอร์ เพื่อจัดสรรการใช้งานทรัพยากรในระบบเครือข่ายสามารถจำแนกได้เป็น 3


2. เครือข่ายระดับเมือง

ระบบแมน (MAN ) เป็นระบบเครือข่ายที่มีการเชื่อมต่อกันในระหว่างที่กว้างใหญ่ ครอบคลุมระยะทางเป็น 100 กิโลเมตร ที่มีการติดต่อกันในระยะที่ไกลกว่าระบบแลนและใกล้กว่าระบบแวน เป็นการติดต่อระหว่างเมือง เช่น กรุงเทพฯ กับเชียงใหม่ เชียงใหม่กับยะลาหรือเป็นการติดต่อระหว่างรัฐ โดยมีรูปแบบการเชื่อมต่อแบบ Ring ตัวอย่างเช่น ระบบ FDDI (Fibre Data Distributed Interface) ที่มีรัศมีหรือระยะทางการเชื่อมต่ออยู่ที่ 100 กิโลเมตร อัตราความเร็วอยู่ที่ 100 Mbps มีรูปแบบการเชื่อมต่อที่ประกอบด้วยวงแหวนสองชั้นๆ แรกเป็น Primary Ring ส่วนชั้นที่ 2 เป็น Secondary Ring หรือ Backup Ring โดยใชัSecondary Ring จะทำงานแทนกันทันทีที่สายสัญญาณ

3. เครือข่ายระดับประเทศ  
 คอมพิวเตอร์ในระยะห่างไกล เป็นเครือข่ายขนาดใหญ่ มีการติดต่อต่อสื่อสารกันในบริเวณกว้าง เช่น เชื่อมโยงระหว่างจังหวัด ระหว่างประเทศ การสร้างเครือข่ายระยะไกลจึงต้องอาศัยระบบบริการข่ายสายสาธารณะ เช่น การสื่อสารแห่ง ประเทศไทย ใช้วงจรสื่อสารผ่านดาวเทียม ใช้วงจรสื่อสารเฉพาะกิจที่มีให้ บริการแบบสาธารณะ เครือข่ายแวนจึงเป็นเครือข่ายที่ใช้กับองค์การที่มีสาขาห่างไกล และต้องการเชื่อมสาขา เหล่านั้นเข้าด้วยกัน เช่น ธนาคาร มีสาขาทั่วประเทศ มีบริการรับฝากและถอนเงินผ่านตู้เอทีเอ็ม

ประโยชน์ของเครือข่ายท้องถิ่น

1. การใช้ทรัพยากรร่วมกัน
2. ช่วยลดต้นทุน
3. เพิ่มความสะดวกในด้านการสื่อสาร
4. ความน่าเชื่อถือและความปลอดภัยของระบบ

การติดตั้งเครือข่ายเพื่อใข้งาน

ยังสามารถเลือกการเชื่อมต่อตามสภาปัตยกรรมเครือข่ายอันได้แก่เครือข่ายแบบ peer-to-peer และเครือข่ายแบบ client/server 

เกณฑ์วัดประสิทธิภาพของเครือข่าย

1. สมรรนะได้แก่ จำนวนผู้ใช้งาน ชนิดสื่อกลางที่ใช่ อุปกรณ์ฮาร์ดแวร์
2. ความน่าเชื่อถือ ได้แก่ ความถี่ของความถี่ของความล้มเหลว ระยะเวลาในการกู้คืน
3. ความปลอดภัย ได้แก่ การป้องกันบุคคลที่มีสิทธิ์ในการเข้าถึงข้อมูล และ คอมพิวเตอร์